56 research outputs found

    Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification

    Get PDF
    To investigate the distribution of LINE-1 repeat sequences, a LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae) and used as an outgroup for phylogenetic comparison. Ateles spider monkeys have a highly rearranged genome and are an ideal model for testing whether LINE-1 is involved in genome evolution. The LINE-1 probe has been mapped in the two Atelidae species for the first time, revealing a high accumulation of LINE-1 sequences along chromosomal arms, including telomeres, and a scarcity of LINE-1 signals at centromere positions. LINE-1 mapping in C. pygmaea (Cebidae) revealed signals at centromere positions and along chromosome arms, which was consistent with previous published data from other Cebidae species. In a broader sense, the results were analyzed in light of published data on whole-chromosomal human probes mapped in these genomes. This analysis allows us to speculate about the presence of LINE-1 sequences at the junction of human chromosomal syntenies, as well as a possible link between these sequences and chromosomal rearrangements

    Genetic Introgression and the Survival of Florida Panther Kittens

    Get PDF
    Estimates of survival for the young of a species are critical for population models. These models can often be improved by determining the effects of management actions and population abundance on this demographic parameter. We used multiple sources of data collected during 1982–2008 and a live-recapture dead-recovery modeling framework to estimate and model survival of Florida panther (Puma concolor coryi) kittens (age 0–1 year). Overall, annual survival of Florida panther kittens was 0.323 Β± 0.071 (SE), which was lower than estimates used in previous population models. In 1995, female pumas from Texas (P. c. stanleyana) were released into occupied panther range as part of an intentional introgression program to restore genetic variability. We found that kitten survival generally increased with degree of admixture: F1 admixed and backcrossed to Texas kittens survived better than canonical Florida panther and backcrossed to canonical kittens. Average heterozygosity positively influenced kitten and older panther survival, whereas index of panther abundance negatively influenced kitten survival. Our results provide strong evidence for the positive population-level impact of genetic introgression on Florida panthers. Our approach to integrate data from multiple sources was effective at improving robustness as well as precision of estimates of Florida panther kitten survival, and can be useful in estimating vital rates for other elusive species with sparse data

    Ultracontinuous single haplotype genome assemblies for the domestic cat (Felis catus) and Asian leopard cat (Prionailurus bengalensis)

    Get PDF
    In addition to including one of the most popular companion animals, species from the cat family Felidae serve as a powerful system for genetic analysis of inherited and infectious disease, as well as for the study of phenotypic evolution and speciation. Previous diploid-based genome assemblies for the domestic cat have served as the primary reference for genomic studies within the cat family. However, these versions suffered from poor resolution of complex and highly repetitive regions, with substantial amounts of unplaced sequence that is polymorphic or copy number variable. We sequenced the genome of a female F1 Bengal hybrid cat, the offspring of a domestic cat (Felis catus) x Asian leopard cat (Prionailurus bengalensis) cross, with PacBio long sequence reads and used Illumina sequence reads from the parents to phase \u3e99.9% of the reads into the two species’ haplotypes. De novo assembly of the phased reads produced highly continuous haploid genome assemblies for the domestic cat and Asian leopard cat, with contig N50 statistics exceeding 83 Mb for both genomes. Whole genome alignments reveal the Felis and Prionailurus genomes are colinear, and the cytogenetic differences between the homologous F1 and E4 chromosomes represent a case of centromere repositioning in the absence of a chromosomal inversion. Both assemblies offer significant improvements over the previous domestic cat reference genome, with a 100% increase in contiguity and the capture of the vast majority of chromosome arms in one or two large contigs. We further demonstrated that comparably accurate F1 haplotype phasing can be achieved with members of the same species when one or both parents of the trio are not available. These novel genome resources will empower studies of feline precision medicine, adaptation and speciation

    A Molecular Phylogeny of Living Primates

    Get PDF
    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species

    Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats

    Get PDF
    The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P \u3c 0.0001) and white spotting (P \u3c 0.0001), respectively

    Worldwide Prevalence of Lentivirus Infection in Wild Feline Species: Epidemiologic and Phylogenetic Aspects

    Get PDF
    The natural occurrence of lentiviruses closely related to feline immunodeficiency virus (FIV) in nondomestic felid species is shown here to be worldwide. Cross-reactive antibodies to FIV were common in several free-ranging populations of large cats, including East African lions and cheetahs of the Serengeti ecosystem and in puma (also called cougar or mountain lion) populations throughout North America. Infectious puma lentivirus (PLV) was isolated from several Florida panthers, a severely endangered relict puma subspecies inhabiting the Big Cypress Swamp and Everglades ecosystems in southern Florida. Phylogenetic analysis of PLV genomic sequences from disparate geographic isolates revealed appreciable divergence from domestic cat FIV sequences as well as between PLV sequences found in different North American locales. The level of sequence divergence between PLV and FIV was greater than the level of divergence between human and certain simian immunodeficiency viruses, suggesting that the transmission of FIV between feline species is infrequent and parallels in time the emergence of HIV from simian ancestors

    Cross‐species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park

    Get PDF
    The outcome of pathogen spillover from a reservoir to a novel host population can range from a β€œdead‐end” when there is no onward transmission in the recipient population, to epidemic spread and even establishment in new hosts. Understanding the evolutionary epidemiology of spillover events leading to discrete outcomes in novel hosts is key to predicting risk and can lead to a better understanding of mechanisms of emergence. Here we use a Bayesian phylodynamic approach to examine cross‐species transmission and evolutionary dynamics during a canine distemper virus spillover event causing clinical disease and population decline in an African lion population (Panthera leo) in the Serengeti Ecological Region between 1993 and 1994. Using 21 near‐complete viral genomes from four species we found that this large‐scale outbreak was likely ignited by a single cross‐species spillover event from a canid reservoir to non‐canid hosts less than one year before disease detection and explosive spread of CDV in lions. Cross‐species transmission from other non‐canid species likely fueled the high prevalence of CDV across spatially structured lion prides. Multiple lines of evidence suggest that spotted hyenas (Crocuta crocuta) could have acted as the proximate source of CDV exposure in lions. We report thirteen nucleotide substitutions segregating CDV strains found in canids and non‐canids. Our results are consistent with the hypothesis that virus evolution played a role in CDV emergence in non‐canid hosts following spillover during the outbreak, and suggests that host barriers to clinical infection can limit outcomes of CDV spillover in novel host species

    Emerging Viruses in the Felidae: Shifting Paradigms

    Get PDF
    The domestic cat is afflicted with multiple viruses that serve as powerful models for human disease including cancers, SARS and HIV/AIDS. Cat viruses that cause these diseases have been studied for decades revealing detailed insight concerning transmission, virulence, origins and pathogenesis. Here we review recent genetic advances that have questioned traditional wisdom regarding the origins of virulent Feline infectious peritonitis (FIP) diseases, the pathogenic potential of Feline Immunodeficiency Virus (FIV) in wild non-domestic Felidae species, and the restriction of Feline Leukemia Virus (FeLV) mediated immune impairment to domestic cats rather than other Felidae species. The most recent interpretations indicate important new evolutionary conclusions implicating these deadly infectious agents in domestic and non-domestic felids

    Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species

    Get PDF
    Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibos moschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphus tragocamelus), saola (Pseudoryx nghetinhensis), gaur (Bos gaurus), and Kirk’s Dikdik (Madoqua kirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB1

    Wild Felids as Hosts for Human Plague, Western United States

    Get PDF
    Plague seroprevalence was estimated in populations of pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague in nondomestic felid hosts to better understand the role of these species in disease persistence and transmission
    • …
    corecore